Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(10): pgad322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37854706

RESUMO

Fungal specialized metabolites are a major source of beneficial compounds that are routinely isolated, characterized, and manufactured as pharmaceuticals, agrochemical agents, and industrial chemicals. The production of these metabolites is encoded by biosynthetic gene clusters that are often silent under standard growth conditions. There are limited resources for characterizing the direct link between abiotic stimuli and metabolite production. Herein, we introduce a network analysis-based, data-driven algorithm comprising two routes to characterize the production of specialized fungal metabolites triggered by different exogenous compounds: the direct route and the auxiliary route. Both routes elucidate the influence of treatments on the production of specialized metabolites from experimental data. The direct route determines known and putative metabolites induced by treatments and provides additional insight over traditional comparison methods. The auxiliary route is specific for discovering unknown analytes, and further identification can be curated through online bioinformatic resources. We validated our algorithm by applying chitooligosaccharides and lipids at two different temperatures to the fungal pathogen Aspergillus fumigatus. After liquid chromatography-mass spectrometry quantification of significantly produced analytes, we used network centrality measures to rank the treatments' ability to elucidate these analytes and confirmed their identity through fragmentation patterns or in silico spiking with commercially available standards. Later, we examined the transcriptional regulation of these metabolites through real-time quantitative polymerase chain reaction. Our data-driven techniques can complement existing metabolomic network analysis by providing an approach to track the influence of any exogenous stimuli on metabolite production. Our experimental-based algorithm can overcome the bottlenecks in elucidating novel fungal compounds used in drug discovery.

2.
Mol Biol Evol ; 38(2): 702-715, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32941612

RESUMO

Despite SARS-CoV and SARS-CoV-2 being equipped with highly similar protein arsenals, the corresponding zoonoses have spread among humans at extremely different rates. The specific characteristics of these viruses that led to such distinct outcomes remain unclear. Here, we apply proteome-wide comparative structural analysis aiming to identify the unique molecular elements in the SARS-CoV-2 proteome that may explain the differing consequences. By combining protein modeling and molecular dynamics simulations, we suggest nonconservative substitutions in functional regions of the spike glycoprotein (S), nsp1, and nsp3 that are contributing to differences in virulence. Particularly, we explain why the substitutions at the receptor-binding domain of S affect the structure-dynamics behavior in complexes with putative host receptors. Conservation of functional protein regions within the two taxa is also noteworthy. We suggest that the highly conserved main protease, nsp5, of SARS-CoV and SARS-CoV-2 is part of their mechanism of circumventing the host interferon antiviral response. Overall, most substitutions occur on the protein surfaces and may be modulating their antigenic properties and interactions with other macromolecules. Our results imply that the striking difference in the pervasiveness of SARS-CoV-2 and SARS-CoV among humans seems to significantly derive from molecular features that modulate the efficiency of viral particles in entering the host cells and blocking the host immune response.


Assuntos
Simulação de Dinâmica Molecular , Proteômica , SARS-CoV-2/química , SARS-CoV-2/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas Virais/química , Animais , Humanos , Domínios Proteicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/metabolismo , Especificidade da Espécie , Proteínas Virais/metabolismo
3.
Genome Biol ; 21(1): 304, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33357233

RESUMO

BACKGROUND: A mechanistic understanding of the spread of SARS-CoV-2 and diligent tracking of ongoing mutagenesis are of key importance to plan robust strategies for confining its transmission. Large numbers of available sequences and their dates of transmission provide an unprecedented opportunity to analyze evolutionary adaptation in novel ways. Addition of high-resolution structural information can reveal the functional basis of these processes at the molecular level. Integrated systems biology-directed analyses of these data layers afford valuable insights to build a global understanding of the COVID-19 pandemic. RESULTS: Here we identify globally distributed haplotypes from 15,789 SARS-CoV-2 genomes and model their success based on their duration, dispersal, and frequency in the host population. Our models identify mutations that are likely compensatory adaptive changes that allowed for rapid expansion of the virus. Functional predictions from structural analyses indicate that, contrary to previous reports, the Asp614Gly mutation in the spike glycoprotein (S) likely reduced transmission and the subsequent Pro323Leu mutation in the RNA-dependent RNA polymerase led to the precipitous spread of the virus. Our model also suggests that two mutations in the nsp13 helicase allowed for the adaptation of the virus to the Pacific Northwest of the USA. Finally, our explainable artificial intelligence algorithm identified a mutational hotspot in the sequence of S that also displays a signature of positive selection and may have implications for tissue or cell-specific expression of the virus. CONCLUSIONS: These results provide valuable insights for the development of drugs and surveillance strategies to combat the current and future pandemics.


Assuntos
Adaptação Biológica , Evolução Molecular , Modelos Genéticos , SARS-CoV-2/genética , Proteínas Virais/genética , Inteligência Artificial , Genoma Viral , Haplótipos , Mutação , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...